4,734 research outputs found

    Structural lineaments in the southern Sierra Nevada, California

    Get PDF
    The author has identified the following significant results. Several lineaments observed in ERTS-1 MSS imagery over the southern Sierra Nevada of California have been studied in the field in an attempt to explain their geologic origins and significance. The lineaments are expressed topographically as alignments of linear valleys, elongate ridges, breaks in slope or combinations of these. Natural outcrop exposures along them are characteristically poor. Two lineaments were found to align with foliated metamorphic roof pendants and screens within granitic country rocks. Along other lineaments, the most consistant correlations were found to be alignments of diabase dikes of Cretaceous age, and younger cataclastic shear zones and minor faults. The location of several Pliocene and Pleistocene volcanic centers at or near lineament intersections suggests that the lineaments may represent zones of crustal weakness which have provided conduits for rising magma

    Accumulator for shaft encoder

    Get PDF
    Digital accumulator relies almost entirely on integrated circuitry to process the data derived from the outputs of gyro shaft encoder. After the read command is given, the output register collects and stores the data that are on the set output terminals of the up-down counters

    Evidence of a major fault zone along the California-Nevada state line 35 deg 30 min to 36 deg 30 min north latitude

    Get PDF
    The author has identified the following significant results. Geologic reconnaissance guided by analysis of ERTS-1 and Apollo-9 satellite imagery and intermediate scale photography from X-15 and U-2 aircraft has confirmed the presence of a major fault zone along the California-Nevada state line, between 35 deg 30 min and 36 deg 30 min north latitude. The name Pahrump Fault Zone has been suggested for this feature after the valley in which it is best exposed. Field reconnaissance has indicated the existence of previously unreported faults cutting bedrock along range fronts, and displacing Tertiary and Quaternary basin sediments. Gravity data support the interpretation of regional structural discontinuity along this zone. Individual fault traces within the Pahrump Fault Zone form generally left-stepping en echelon patterns. These fault patterns, the apparent offset of a Laramide age thrust fault, and possible drag folding along a major fault break suggest a component of right lateral displacement. The trend and postulated movement of the Pahrump Fault Zone are similar to the adjacent Las Vegas Shear Zone and Death Valley-Furnace Creek Faults, which are parts of a regional strike slip system in the southern Basin-Range Province

    Crustal extension and transform faulting in the southern Basin Range Province

    Get PDF
    The author has identified the following significant results. Field reconnaissance and study of geologic literature guided by analysis of ERTS-1 MSS imagery have led to a hypothesis of tectonic control of Miocene volcanism, plutonism, and related mineralization in part of the Basin Range Province of southern Nevada and northwestern Arizona. The easterly trending right-lateral Las Vegas Shear Zone separates two volcanic provinces believed to represent areas of major east-west crustal extension. One volcanic province is aligned along the Colorado River south of the eastern termination of the Las Vegas Shear Zone; the second province is located north of the western termination of the shear zone in southern Nye County, Nevada. Geochronologic, geophysical, and structural evidence suggests that the Las Vegas Shear Zone may have formed in response to crustal extension in the two volcanic provinces in a manner similar to the formation of a ridge-ridge transform fault, as recognized in ocean floor tectonics

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte

    Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement

    Full text link
    We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of functions; (b) A local hidden variable model needs only a constant amount of communication to create, within an arbitrarily small statistical distance, a distribution resulted from local measurements of an entangled quantum state, as long as the number of measurement outcomes is constant.Comment: A preliminary version of this paper appears as part of an article in Proceedings of the the 37th ACM Symposium on Theory of Computing (STOC 2005), 460--467, 200

    On the relationship between continuous- and discrete-time quantum walk

    Full text link
    Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian oracles; v3: published version, with improved analysis of phase estimatio

    Quantum rejection sampling

    Full text link
    Rejection sampling is a well-known method to sample from a target distribution, given the ability to sample from a given distribution. The method has been first formalized by von Neumann (1951) and has many applications in classical computing. We define a quantum analogue of rejection sampling: given a black box producing a coherent superposition of (possibly unknown) quantum states with some amplitudes, the problem is to prepare a coherent superposition of the same states, albeit with different target amplitudes. The main result of this paper is a tight characterization of the query complexity of this quantum state generation problem. We exhibit an algorithm, which we call quantum rejection sampling, and analyze its cost using semidefinite programming. Our proof of a matching lower bound is based on the automorphism principle which allows to symmetrize any algorithm over the automorphism group of the problem. Our main technical innovation is an extension of the automorphism principle to continuous groups that arise for quantum state generation problems where the oracle encodes unknown quantum states, instead of just classical data. Furthermore, we illustrate how quantum rejection sampling may be used as a primitive in designing quantum algorithms, by providing three different applications. We first show that it was implicitly used in the quantum algorithm for linear systems of equations by Harrow, Hassidim and Lloyd. Secondly, we show that it can be used to speed up the main step in the quantum Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum algorithm for the hidden shift problem of an arbitrary Boolean function and relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to appear in proceedings of ITCS 2012

    Distinguishing n Hamiltonians on C^n by a single measurement

    Get PDF
    If an experimentalist wants to decide which one of n possible Hamiltonians acting on an n dimensional Hilbert space is present, he can conjugate the time evolution by an appropriate sequence of known unitary transformations in such a way that the different Hamiltonians result in mutual orthogonal final states. We present a general scheme providing such a sequence.Comment: 4 pages, Revte
    corecore